浅谈 IPv6 的优势及未来的发展方向 (红塔证券供稿 云南局指导)

2017年11月,中共中央办公厅、国务院办公厅印发了《推进互联网协议第六版(IPv6)规模部署行动计划》。

2019年4月,工业和信息化部为深入贯彻落实行动计划开展了专项行动。

2021年7月,工业和信息化部、中央网络安全和信息化委员会办公室印发了《IPv6 流量提升三年专项行动计划(2021-2023年)》。

全面推广 IPv6 的部署实施已成为国家在互联网领域的重大战略规划,国家如此重视,那么 IPv6 相比 IPv4 有哪些优势呢? IPv6 未来的发展方向又是什么呢?

一、IPV6 的优势

(一)海量的地址

互联网协议 IP (Internet Protocol) 规定了在网络中传递数据的规范, 网络中的每一个设备要想和其他设备通信, 都需要一个可以被识别的像身份证一样的标识, 这个标识在网络世界中就被成称为 IP 地址。

目前我们广泛使用的 IP 协议是 IPv4 (IP Version 4), 对应的网络设备使用的地址即为 IPv4 地址。 IPv4 地址长度为 32 bit, 因此能提供的地址最多为 2 的 32 次方(约 43 亿)个地址。但是除去一些预留地址以及用于广播、测试、私有网络的专用地址外,实际可用地址是不足 43 亿的。

互联网发展这么多年,2019年11月25日,网络协调中心(RIPE NCC)宣布,全球所有43亿个IPv4地址已全部分配完毕。

相比 IPv4, IPv6 能够提供海量的地址空间, IPv6 的地址长度为 128bit, 能够提供 2 的 128 次方个地址,这个数量已经大到无法想象,一个很形象的比喻是 IPv6 几乎可以为地球上的每一粒沙子都分配一个地址。可见, IPv6 打破了IPv4 地址的局限性,可为后续万物互联的世界提供充足的地址。

图 1 128 位的 IPv6 地址

(二)分层编址

IPv6 编址类似于我们的公民身份证编址,它是层次化的。和IPv4 相比,IPv6 的地址空间和国家,省份,区县等地理空间建立了有关联的映射。

2001:1:1::/48(省)					
2001:1:1:0000::/52 (A市)		2001:1:1:1000:/52 (B市)			
2001:1:1:0000:/56(县)	2001:1:1:0100::/56(县)	2001:1:1:1000::/56(县)	2001:1:1:1100::/56(县)		

表 1 IPv6 分层编址

如上表所示,一个省级单位申请到/48 位的地址,而到市级单位,就可以使用/52 位,也就是到市级单位时,利用52-48=4 位来划分子网,即可以划分 16 个子网。如果一个省有 16 个以上的市,就用 5 位。每个市级单位再往下到县级单位,就可以使用/56 位地址,同样,每个市下面可以支持 16 个子网分别用于各个县级单位。每个县还可以进一步把/56 位的地址分到下面的各个乡镇。

当这样做好规划后,网络就可以按区域来汇聚路由。比如在上表中,对于省级单位的路由器来说,一条2001:1:1:0000::/52路由条目就包括了整个A市,不用再单独针对某个县来写入具体的/56位路由。这就在减少路由条目的同时,提高了网络转发效率。

反之, IPv4 地址中的 15.16.x1.y1/16 可能位于北美, 而 15.16.x2.y2/16 却位于东南亚, 这就大大增加了管理难度。这种情况在 IPv6 时代将不复存在。这就简化了地址的管理, 降低了管理成本。

(三)更小的路由表

IPv4 时代,由于缺乏统一的设计和管理,各种子网的存在不仅导致骨干路由表过于庞大、路由设备资源消耗过大、路由转发效率降低,而且还造成了地址的浪费。

首先,IPv4的地址由美国进行统一发布,中国并没有架设对应的根域名服务器。在IPv4的推进和推广的时候,并没有合理的给予中国更多成段的地址,而是一小段一小段的给中国,需要的时候就申请,这就导致了我们在使用的IPv4地址是非常杂乱的。但是IPv6就不一样,首先在IPv6的推广的时候,中国架设了根域名服务器,IANA给予中国的IPv6地址更加合理,地址块都是大块的,相对IPv4来说更加精简。因此,不成段的IPv4地址路由表很难去聚合,所以IPv4的路由表错综复杂,相比较来说,IPv6的成段的地址就更加容易聚合,聚合后的路由表项就大大减小。

国家	主根服务器	辅根服务器	国家	主根服务器	辅根服务器
中国	1	3	西班牙	0	1
美国		2	奥地利	0	
日本	1	0	智利	0	1
印度	0	3	南非	0	
法国	0	3	澳大利亚	0	1
德国	0	2	瑞士	0	
俄罗斯	0	1	荷兰	0	1
意大利	0	1			

表 2 IPv6 根域名服务器分布情况

IPv4根服务器分布表

名称	地位	主服务器运营者 [1]	主服务器位置 [1]	IP [1]
A	DM and Root server	INTERNI.NET	美国弗吉尼亚州	198.41.0.4
В	Root server	美国信息科学研究所	美国加利弗尼亚州	128.9.0.107
С	Root server	PSINet公司	美国弗吉尼亚州	192.33.4.12
D	Root server	马里兰大学	美国马里兰州	128.8.10.90
E	Root server	美国航空航天管理局	美国加利弗尼亚州	192.203.230.10
F	Root server	因特网软件联盟	美国加利弗尼亚州	192.5.5.241
G	Root server	美国国防部网络信息中心	美国弗吉尼亚州	192.112.36.4
Н	Root server	美国陆军研究所	美国马里兰州	128.63.2.53
1	Root server	Autonomica公司	瑞典斯德哥尔摩	192.36.148.17
J	Root server	VerSign公司	美国弗吉尼亚州	192.58.128.30
K	Root server	RIPE NCC	英国伦敦	192.0.14.129
L	Root server	IANA	美国弗吉尼亚州	198.32.64.12
М	Root server	WIDE Project	日本东京	202.12.27.33

表 3 IPv4 跟域名服务器分布表

(四)自动配置功能

IPv6 机制提供了地址的自动配置功能,这就使得支持IPv6 的节点能够实现即插即用,使得网络的管理更加方便和快捷。IPv6 支持两种类型的自动配置:

1、有状态自动配置

这种类型的配置需要一定程度的人为干预,因其需要IPv6 动态主机配置协议 (DHCPv6) 服务器来安装和管理节点。 DHCPv6 服务器保存向其提供配置信息的节点列表并维护状态信息,这样服务器知道每个地址的使用时间,以及何时可用于重新分配。

2、无状态自动配置

在无状态地址自动配置方式下, 网络接口接收路由器宣

告的全局地址前缀(64位), 再结合接口ID得到一个128位的可聚集全局单播地址(接口地址实际上就是MAC地址,由于MAC地址是48位的, 所以这里要用到一个IEEE提供的 EUI64转换算法,可以将48位的MAC地址换算为64位), 最后证实该地址可用。

首先,为配置接口,主机需要前缀信息(类似于 IPV4 地址的网络部分),因此它会发送一条路由器请求 (RouterSolicitation, RS)消息。该消息以组播方式发送给所有路由器。这实际上是一种 ICMPv6 消息,并用编号进行标识,RS 消息的 ICMPv6 类型为 133。

路由器使用一条路由器通告(Router-Advertisement, RA)消息进行应答,其中包含请求的前级信息。RA消息也是组播分组,被发送到表示所有节点的组播地址,其ICMPv6类型为134。RA消息是定期发送的,但主机发送RS消息后,可立即得到响应,因此无需等待下一条定期发送的RA消息,就能获得所需的信息。

最后主机向该地址发送一个邻居发现请求(Neighbor DiscoveryRequest),如果无响应,则证明网络地址是唯一的。

[UT-1]		
获得前缀	缀上接口ID	证实可用
主机通过监听路由器通告获取全局 地址前缀(64位)	缀上自己通过MAC地址算出的64位 接口ID,得到128位全局IP地址	向改地址发送一个邻居发现请求, 如果无响应则证实该地址可以用

(五) 更高的安全性

在 IPv6 网络中,用户可以对网络层的数据进行加密、对 IP报文进行校验,并对 IPv6 的加密与鉴别提供了分组的保密性与完整性,这极大的增强了网络的安全性。

如 IPSec 在 IPv4 中是可选的,但在 IPv6 中强制使用。 IPSec 可以实现以下 4 项功能:①数据机密性:IPSec 发送方将包加密后再通过网络发送;② 数据完整性:IPSec 可以验证 IPSec 发送方发送的包,以确保数据传输时没有被改变;③数据认证:IPSec 接受方能够鉴别 IPsec 包的发送起源,此服务依赖数据的完整性;④反重放:IPSec 接受方能检查并拒绝重放包。

二、IPv6 的发展方向

(一) IPv6 向 IPv6+的演进

现阶段,按照之前的部署规划,IPv6 已经完成了IPv6/IPv4 双栈过度,端到端的 IPv6 改造,部署 IPv6 的基础环境日趋成熟。在全球 IPv6 角力的背景下,我国 IPv6 规模部署已进入第三阶段。IPv6 专家委员会主任邬贺铨院士指出,"IPv6+"是 IPv6 规模部署第三阶段的重要抓手。IPv6是下一代互联网升级的起点,"IPv6+"是下一代互联网体系的核心创新技术。"IPv6+"是 IPv6 的升级,是面向 5G和云时代的 IP 网络创新体系。

"IPv6+"包括:一是以 SRv6 分段路由、网络编程、网络切片、确定性转发、随流检测、新型组播、应用感知、智

能无损网络等为代表的网络技术体系的创新;二是以实时健康感知、网络故障主动发现、故障快速识别、网络智能自愈、系统自动调优等为代表的智能运维体系创新;三是以5GtoB、云间互联、用户上云、网安联动等为代表的网络商业模式的创新。

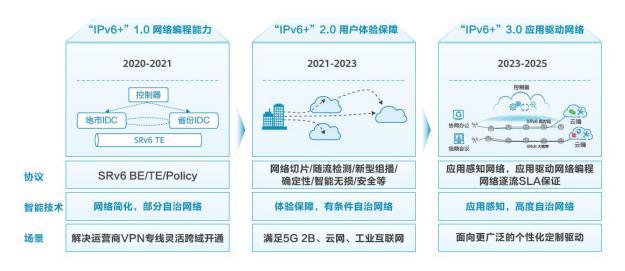


图 3 IPv6+的演进阶段

(二) IPv6+在金融行业的应用

IPv6+将给金融行业数据化转型带来哪些变化?

金融数据化转型已经从多点突破迈入深化发展阶段, IPv6+已在部分金融场景经过创新验证,发挥出重要的作用。

1、多地多活数据中心场景

金融行业信息安全和业务连续性要求高,监管单位对金融机构提出了明确的建设要求,数据中心建设要采用"两地三中心"以及具备"多活"的能力,基于"IPv6+"技术构建多中心多活容灾有如下优势。

- (1)通过基于 IPv6 的全局域名调度,配合双中心 IPv6 SDN 互联延伸网络架构,实现线路接入、前置资源、内网资源的多活容灾。多中心通过 SRv6 互联实现云网协同互通,简化部署。
- (2)多中心之间数据中心互联(DCI)网络,通过"IPv6+"的分片技术可实现金融业务的端到端资源隔离。同时网络智能流量调度将提升带宽利用率,每年节省大量专线租赁费用。
- (3)基于用户位置、线路带宽、业务质量、云资源负载等可进行灵活的资源调度,实现网随业动、网随云动。"IPv6+"业务保障能力可实现秒级业务切换,在增加 AI 提升预测能力的同时,可实现从故障驱动的被动运维转变为预测性主动运维。

2、海量终端的物联网场景

随着普惠金融服务类型的不断丰富,仓储物联网金融、 货运物联网金融、公共服务物联网金融等创新模式金融服务 的不断推出,对支撑这些业务的物联网平台而言,基于 IPv6 海量的地址空间可以满足万物互联的通信要求。"IPv6+"技 术对物联网有如下优势。

- (1) 充分利用 IPv6 的海量地址空间,为每个 IOT 设备分配全球唯一的 IPv6 地址,可以满足现在和将来万物互联的通信需求。
- (2)由于 IPv6 的海量地址空间,无需大规模部署 NAT 设备,可实现网络端到端溯源,降低安全隐患以及降低网络

建设成本。

- (3)"IPv6+"的应用识别能力可解决当前物联场景下网络层面业务识别、路径检测、路径选择问题,从而实现业务保障;进一步基于 AI 的学习,可进行物联终端业务流量行为分析,实现自动化物联 IOT 聚类、差异化服务保障、异常行为安全检测等方面的能力。
 - 3、数字货币等创新应用场景

数字货币已经进入发展期,ICT 的基础架构要配套数字 人民币业务量和应用范围的增长和扩大,支撑平台变革如跨 中心交易协同以及海外业务扩展等。"IPv6+"技术应用于数 字货币有如下优势。

- (1)数字货币有跨中心交易协同业务的特点,如多地分布式账本,基于"IPv6+"的组播技术可以有效解决 1:N 联接问题,降低广域带宽,提升账本节点性能。
- (2)对于跨中心大数据量同步业务需要高性能、低时延环境。"IPv6+"低时延与时延控制技术,能够有效避免突发拥塞丢包和网络转发调度不确定时延,保障丢包以及时延在一个可控范围,提升跨中心交易协同业务的性能。
- (3)安全可靠是关键。IPv6协议引入报文扩展头、地址自动配置等新特性,在提高网络服务质量的同时,也引入组播通信、MTU路径发现等新特性,可有效应对广播风暴、分片攻击等部分网络安全风险。同时在国家标准方面,涵盖应用层、网络层、终端层等层次的IPv6网络安全体系框架也正在加速推出。总体来讲,在IPv6环境中,攻防双方正

处于同一起跑线。

除了以上场景,"IPv6+"已经融入金融数字化转型的方方面面。随着"IPv6+"技术创新与融合应用研究的持续深入,场景适配会不断增强,"IPv6+"成果转化进程会更加顺畅。

参考文献:

《推进互联网协议第六版(IPv6)规模部署行动计划》. 国务院办公厅印发

《关于金融行业贯彻<推进互联网协议第六版(IPv6)规模部署行动计划>的实施意见》.中国人民银行.银保监会.证监会发布

3.《"IPv6+"技术创新远景与展望》.推进 IPv6 规模部署专家委员会